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Introduction

These are notes supporting a minicourse given during the summer school “Mi-
crolocal and probabilistic methods in geometry and dynamics” in Jussieu. The
goal of this minicourse is to explain how spaces of anisotropic distributions
can be used to prove an asymptotic expansion for the correlations of transitive
Anosov diffeomorphisms (Theorem 1).

The spaces that we use are adapted from the ideas of [FR06] but the meth-
ods that we use to study the action of composition operators on these spaces
rather follow the strategy from [BT07, BT08, Bal18] based on Paley–Littlewood
decomposition.

1 Anosov diffeomorphisms

1.1 Definition and basic properties

Definition 1.1. Let M be a compact C∞ manifold. Endow M with any smooth
Riemannian metric. Let F : M → M be a C1 diffeomorphism. We say that F
is Anosov if, for every x ∈M , there is a decomposition of the tangent space of
M at x in TxM = Eux ⊕ Esx, such that the following properties hold:

� invariance: for every x ∈M , we have DxF (Eux ) = EuFx and DxF (Esx) =
EsFx;

� hyperbolicity: there are constants C, λ > 1 such that for every x ∈
M,n ∈ N, vs ∈ Esx and vu ∈ Eux , we have:

|DxF
n · vs| ≤ Cλ−n|vs| and |DxF

−n · vu| ≤ Cλ−n|vu|.

Remark 1.2. Notice that we make no regularity assumption on the stable and
unstable directions in Definition 1.1. However, one can prove from the definition
that Eux and Esx depend continuously on x.

Example 1.3. Let d ≥ 1. Let A ∈ GL(d,Z) be an invertible matrix with
integer coefficients, whose inverse also has integer coefficients. The matrix A
induces a diffeomorphism F of the torus Td = Rd/Zd, called a CAT map. Let
us prove that if A has no eigenvalue of modulus 1, then F is Anosov.

Let Eu denote the sum of the characteristic spaces of A corresponding to
eigenvalues of modulus greater than 1, and Es the sum of the characteristic

1



spaces of A corresponding to eigenvalues of modulus less than 1. Since A has
no eigenvalue of modulus 1, we have Rd = Eu ⊕ Es. Moreover, Eu and Es are
stable under the action of A, and the endomorphisms of Eu and Es induced by
A have spectral radius respectively strictly greater than 1 and strictly less than
1.

Now, using the standard parallelization TTd ' Td ×Rd, the derivative of F
is just the map (x, v) 7→ (Fx,Av). Thus, we can define for x ∈ Td the stable
and unstable directions by Eux = {x} ×Eu and Esx = {x} ×Es. The invariance
and hyperbolicity properties follow then from the definition of Eu and Es.

1.2 Stable and unstable manifolds

Proposition 1.4 (Local stable manifolds). Let M be a compact C∞ manifold
and F a C∞ Anosov diffeomorphism on M . Let d be a distance associated to a
Riemannian metric on M . Then there is ε > 0 such that for every x ∈ M the
set

W s
ε (x) = {y ∈M : d(Fnx, Fny) < ε for every n ≥ 0}

is a C∞ manifold, called the local stable manifold of F at x. Moreover:

� for every x ∈M and y ∈W s
ε (x), we have TyW

s
ε (x) = Esy;

� there are C > 0 and θ ∈ (0, 1) such that for every x ∈ M,y ∈ W s
ε (x) and

n ≥ 0 we have d(Fnx, Fny) ≤ Cθnd(x, y);

� the manifold W s
ε (x) depends smoothly on x.

See for instance [Yoc95, §3.5] for a proof of Proposition 1.4 and the meaning
of the third point. By replacing F by F−1, one get a similar result for local
unstable manifolds

Wu
ε (x) =

{
y ∈M : d(F−nx, F−ny) < ε for every n ≥ 0

}
for x ∈M.

The global stable manifold of x ∈M may then be defined as

W s(x) =

{
y ∈M : d(Fnx, Fny) →

n→+∞
0

}
.

Notice then that if y ∈ W s(x) then Fn(y) ∈ W s
ε (Fnx) for n large enough, and

it follows that
W s(x) =

⋃
n≥0

F−n(W s
ε (Fnx)),

which implies that W s(x) is a C∞ immersed submanifold of M . One defines
similarly the global unstable manifold of x:

Wu(x) =

{
y ∈M : d(F−nx, F−ny) →

n→+∞
0

}
=
⋃
n≥0

Fn(Wu
ε (F−nx)).

Provided that ε > 0 is small enough, for every x ∈ M the manifolds
Wu
ε (x) and W s

ε (x) have a unique point of intersection, and this intersection
is transverse. It follows that there is δ > 0 such that for every x, y ∈ M
such that d(x, y) ≤ δ the manifolds W s

ε (x) and Wu
ε (y) have a unique point

of intersection [x, y]. Moreover, the map (x, y) 7→ [x, y] is continuous from
{x, y ∈M ; d(x, y) ≤ δ} to M . Notice that [x, y] is a point whose orbit is asymp-
totic to the orbit of x in the future and to the orbit of y in the past. We will
use this construction in the proof of Lemma 4.6 below.
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1.3 Asymptotics of correlations

The goal of this minicourse is to give a proof in a particular case of the following
result.

Theorem 1 ([GL06]). Let M be a compact C∞ manifold and F : M →M be a
C∞ transitive Anosov diffeomorphism. There is a discrete bounded subset Res
of C \ {0}, and, for each λ ∈ Res, a non-negative integer N(λ), and N(λ) + 1
non-trivial continuous bilinear forms aλ,0, . . . , aλ,N(λ) from C∞(M) × C∞(M)
to C, such that for each f, g ∈ C∞(M) and η > 0, we have

∫
M

f ◦ Fngdx =
n→+∞

∑
λ∈Res
|λ|≥η

N(λ)∑
k=0

aλ,k(f, g)nkλn +O(ηn). (1)

Remark 1.5. 1. To define the integral in the left hand side of (1), one can
use any smooth positive density equivalent to Lebesgue on M .

2. The elements of Res are called the (Ruelle–Pollicott) resonances of F .

3. One can be slightly more precise, the bilinear forms aλ,k’s from Theorem
1 factorize through finite dimensional spaces. Thus, Theorem 1 can be
reformulated in the following way. For every η > 0, there are D ≥ 0, a
D × D matrix B and two continuous linear maps P,Q from C∞(M) to
RD such that for every f, g ∈ C∞(M) we have∫

M

f ◦ Fngdx =
n→+∞

〈BnPf,Qg〉+O(ηn).

4. The O(ηn) in (1) is controlled by the Ck norms of f and g for some k that
depends on η.

Remark 1.6. Notice that the set Res, the numbers N(λ) and the coefficients aλ,k
are uniquely determined by the sequence

(∫
M
f ◦ Fngdx

)
n≥0

. Indeed, consider

the function

Ψf,g(z) =
∑
n≥0

z−(n+1)

∫
M

f ◦ Fngdx

which is holomorphic for |z| � 1. Using (1), we find that Ψf,g(z) has a meromor-
phic continuation to C \ {0} whose poles are contained within Res. Moreover,
if λ ∈ Res, we have near λ

Ψf,g(z) = H(z) +

N(λ)∑
k=0

cλ,k(f, g)

(z − λ)k+1
,

where the function H(z) is holomorphic near λ. Moreover, we have cλ,k(f, g) =
k!λkaλ,k(f, g) +Gλ,k(aλ,k+1(f, g), . . . , aλ,N(λ)(f, g)) for k = 0, . . . , N(λ), where
the number Gλ,k(aλ,k+1(f, g), . . . , aλ,N(λ)(f, g)) is a linear combination of the
coefficients aλ,k+1(f, g),. . . , aλ,N(λ)(f, g). Thus, Ψf,g(z) uniquely determines
the aλ,k(f, g)’s. Moreover, by taking generic f and g, all the aλ,k(f, g)’s are
non-zero. Consequently, when f and g run over C∞(M), the meromorphic
functions Ψf,g(z) determine the set Res and the numbers N(λ).
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1.4 SRB measure

If F is a transitive C∞ diffeomorphism on a compact manifold M , then one can
associate to F a unique Sinäı–Ruelle–Bowen (SRB) measure µ. This is a Borel
probability measure on M , invariant by F , which plays a particular role for the
statistical properties of F .

There are several properties that (individually) distinguish the SRB measure
µ among all F -invariant Borel probability measures:

� µ is physical : for Lebesgue almost every x ∈M , we have for all continuous
function f : M → C

1

n

n−1∑
k=0

f ◦ F k(x) →
n→+∞

∫
M

fdµ.

� µ has smooth conditionals on local unstable manifolds (and thus is an
equality in Ruelle’s inequality).

� µ is the limit of invariant measures of certain small stochastic perturba-
tions of F .

� The wave front set of µ is contained in
{

(x, ξ) ∈ T ∗M : ξ|Eu = 0
}

.

For the first three characterizations of µ, one can refer to [You02] and ref-
erences therein. The last point follows for instance from [FRS08, Corollary 1].
Theorem 1 allows us to add a characterization of µ to this list.

Theorem 2 ([GL06]). Under the assumption of Theorem 1, and if M is con-
nected, the number 1 belongs to Res. Moreover, there is no other resonance of
modules larger than or equal to 1, N(1) = 0 and

a1,0 : (f, g) 7→
∫
M

fdµ

∫
M

gdx.

Corollary 1.7. Under the assumption of Theorem 1, and if M is connected,
for every f, g ∈ C∞(M), we have∫

M

f ◦ Fngdx →
n→+∞

∫
M

fdµ

∫
M

gdx. (2)

Moreover, the convergence is exponentially fast.

Remark 1.8. Notice that the convergence (2) also follows from the physicality
of µ and the dominated convergence theorem.

2 Asymptotics of correlations in the linear case

2.1 The doubling map

Before starting the proof of Theorem 1, let us study a toy-model: the doubling
map of the circle. This is the map F on S1 = R/Z defined by F (x) = 2x mod 1.
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Let f and g be C∞ functions on S1. As f and g are smooth, they are the sums
of their Fourier series (the convergence actually holds in C∞)

f(x) =
∑
k∈Z

ck(f)e2iπkx and g(x) =
∑
k∈Z

ck(g)e2iπkx for x ∈ S1,

where our convention for Fourier coefficients is

ck(f) =

∫
S1
e−2iπkxf(x)dx for k ∈ Z.

Then, notice that for every n ≥ 0, we have

f ◦ Fn(x) =
∑
k∈Z

ck(f)e2iπ2nkx for x ∈ S1.

It follows that ∫
S1
f ◦ Fngdx =

∑
k∈Z

ck(f)c−2nk(g).

Now, take N ≥ 1. Since f and g are C∞, we find that there is a constant
CN > 0 such that for every k ∈ Z \ {0} we have

|ck(f)| ≤ CN |k|−N and |ck(g)| ≤ CN |k|−N .

Thus, we have∣∣∣∣∫
S1
f ◦ Fngdx−

∫
S1
fdx

∫
S1
gdx

∣∣∣∣ ≤ 2C2
N2−nN

+∞∑
k=1

|k|−2N .

Since N can be chosen arbitrarimy large, we get indeed an asymptotic expansion
as in (1), with 1 being the only resonance.

2.2 CAT map

Let us now consider a particular case in Theorem 1. Let A ∈ GL(2,Z) be a
matrix with no eigenvalue of modulus 1 and F be the associated CAT map (see
Example 1.3). We want to adapt the argument in the previous section to prove
Theorem 1 in this particular case.

Since A has no eigenvalues of modulus 1, so does tA−1. Let e∗u and e∗s be
eigenvectors for tA−1 with eigenvalues respectively λ,±λ−1 such that |λ| > 1.
Define the cone

C∗u = {wse∗s + wue
∗
u : wu, ws ∈ R, |ws| ≤ |wu|} . (3)

Let us point out the following property of the cone C∗u:

tA−1(C∗u) ⊆ Int(C∗u) ∪ {0} . (4)

Moreover, there is a constant C0 > 0 such that, for every w ∈ C∗u and n ≥ 0, we
have

|tA−nw| ≥ C−1
0 |λ|n|w|, (5)
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and, for every w ∈ R2 \ C∗u and n ≥ 0 we have

|tAnw| ≥ C−1
0 |λ|n|w|. (6)

To prove these properties, just use that the norm wue
∗
u +wse

∗
s 7→ |wu|+ |ws| is

equivalent to the standard norm on R2.
Now, let f, g be C∞ functions on T2. As above, we decompose f and g in

Fourier series

f(x) =
∑
k∈Z2

ck(f)e2πk·x and g(x) =
∑
k∈Z2

ck(g)e2iπk·x

It follows that for n ≥ 0

f ◦ Fn(x) =
∑
k∈Z2

ck(f)e2iπk·Anx =
∑
k∈Z2

ck(f)e2iπtAnk·x

=
∑
k∈Z2

ctA−nk(f)e2iπk·x

Thus ∫
T2

f ◦ Fngdx =
∑
k∈Z2

ctA−nk(f)c−k(g).

Let N ≥ 3. Since f and g are C∞, there is a constant CN such that

|ck(f)| ≤ CN |k|−2N and |ck(g)| ≤ CN |k|−N .

Thus, we have∣∣∣∣∫
T2

f ◦ Fngdx−
∫
T2

fdx

∫
T2

gdx

∣∣∣∣ ≤ C2
N

∑
k∈Z2\{0}

|k|−N (|k||tA−nk|)−N . (7)

For k ∈ Z2 \ {0}, let T = min
{
l ∈ {0, . . . , n− 1} : tA−`k ∈ Cu∗

}
, with the con-

vention that T = n if tA−(n−1)k /∈ Cu∗ . Using (5), we find that if T 6= n then

|tA−nk| = |tA−(n−T )(tA−T k)| ≥ C−1
0 |λ|n−T |tA−T k|. (8)

Notice that this estimate still holds when T = n (up to making C0 larger).
Using (6), we find that if T 6= 0 then

|k| ≥ C−1
0 |λ|T−1|tA−(T−1)k| ≥ C̃−1

0 |λ|T |tA−T k|, (9)

for some constant C̃0 > 1. Once again, this estimate clearly still holds when
T = 0. Putting (8) and (9) together, we find that

|k||tA−nk| ≥ (C0C̃0)−1|λ|n|tA−T k|2 ≥ (C0C̃0)−1|λ|n,

where we used that tA−T k has integer coefficients to find that |tA−T k| ≥ 1.
Recalling (7), we find that∣∣∣∣∫

T2

f ◦ Fngdx−
∫
T2

fdx

∫
T2

gdx

∣∣∣∣ ≤ C2
NC

N
0 C̃

N
0 |λ|−nN

∑
k∈Z2\{0}

|k|−N .

Since N can be chosen arbitrarily large and |λ| > 1, this estimate proves The-
orem 1 in the case of a cat map on the torus T2. Notice that in that case,
the resonance 1, whose existence is guaranteed by Theorem 2, is the only one.
Moreover, Lebesgue measure on the torus is the SRB measure.
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3 Asymptotics of correlations

3.1 Small perturbation of a CAT map

Let A ∈ GL(2,Z). Assume that A has no eigenvalue of modulus 1 and let F0

be the associated CAT map. In this minicourse, we will prove Theorem 1 for F
of the form F = F0 + ϕ where ϕ : T2 → R2 is a C∞ function with ‖ϕ‖C1 � 1.
Even if we will not need it in our proof, we will prove that F is Anosov. This
proof can be generalized to check that the Anosov property is C1 open.

Proposition 3.1. There is ε > 0 such that for every C∞ function ϕ : T2 → R2

with ‖ϕ‖C1 ≤ ε the map F = F0 + ϕ is Anosov.

Proof. Let eu and es be eigenvectors for A with associated eigenvalues respec-
tively λ and ±λ−1 such that |λ| > 1. For v ∈ R2, write v = vueu + vses. Define
then the cones

Cu =

{
vses + vueu : vs, vu ∈ R, |vs| ≤

1

2
|vu|
}

and

Cs =

{
vses + vueu : vs, vu ∈ R, |vu| ≤

1

2
|vs|
}
.

Notice then that A(Cu) ⊆ Int(Cu)∪{0} and A−1(Cs) ⊆ Int(Cs)∪{0}. Moreover,
there is a constant C > 0 such that for every n ≥ 0, v ∈ Cu and w ∈ Cs we have

|Anv| ≥ C−1|λ|n|v| and |A−nw| ≥ C−1|λ|n|w|.

To prove these estimates, just use that the norm vses + vueu 7→ |vu| + |vs| is
equivalent to the standard norm on R2.

Choose then ρ ∈ (1, |λ|) and n0 large enough so that C−1|λ|n0 > ρn0 . Notice
then that if ε is small enough and ‖ϕ‖C1 ≤ ε then for every x ∈ T2 we have (we
identify the derivative of F with an endomorphism of R2 through the standard
parallelization)

DxF (Cu) ⊆ Int(Cu) ∪ {0} ,
DxF

−1(Cs) ⊆ Int(Cs) ∪ {0} ,
and for every v ∈ Cu and w ∈ Cs we have

|DxF
n0v| ≥ ρn0 |v| and |DxF

−n0w| ≥ ρn0 |w|.

It implies that there is a constant C > 0 such that for every n ≥ 0, v ∈ Cu and
w ∈ Cs we have

|DxF
nv| ≥ C−1ρn|v| and |DxF

−nw| ≥ C−1ρn|w|. (10)

We are now ready to construct the unstable direction for F . For each x ∈ T2

and n ≥ 0, write
DF−nxF

n · eu = pn(x)eu + qn(x)es.

Since eu ∈ Cu, so does pn(x)eu + qn(x)es and thus there is some new constant
C (that does not depend on n nor x) such that |pn(x)| ≥ C−1ρn (here we use
(10)). Define an(x) = qn(x)/pn(x), and notice that

(an(x)− an+1(x))DxF
−n · es =

eu
pn(x)

− DF−(n+1)xF · eu
pn+1(x)

.
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Using (10) again, we find that there is a constant C > 0 that does not depend
on n nor x such that |an(x) − an+1(x)| ≤ Cρ−2n. It follows that the sequence
(an(x))n≥0 has a limit a(x).

Notice then that for x ∈ T2 and n ≥ 0 we have

DxF · (eu + an(x)es) = DxF ·
(
DF−nxF

n · eu
pn(x)

)
=
pn+1(Fx)eu + qn+1(Fx)

pn(x)

=
pn+1(Fx)

pn(x)
(eu + an+1(Fx)es).

Since (an(x))n≥0 and (an+1(Fx))n≥0 have limits, it follows that the sequence
(pn+1(Fx)/pn(x))n≥0 has a limit, call it λF (x), that satisfies

DxF · (eu + a(x)es) = λF (x)(eu + a(Fx)es). (11)

For x ∈ T2, we let Eux be the line generated by eu + a(x)es. It follows from
(11) that DxF (Eux ) = EuFx. Notice also that Eux ⊆ Cu (the cone is closed), and
thus it follows from (10) that the vectors of Eux are uniformly expanded in the
sense of Definition 1.1.

The stable direction is constructed similarly replacing F by F−1.

3.2 Hilbert space of anisotropic distributions

For α ∈ R and f ∈ D′(T2), define the norm

‖f‖2α :=
∑
k∈Z2

k∈Cu∗

(1 + |k|2)α|ck(f)|2 +
∑
k∈Z2

k/∈Cu∗

(1 + |k|2)−α|ck(f)|2. (12)

Define then the space

Hα =
{
f ∈ D′(T2) : ‖f‖α <∞

}
.

Due to the different weights in the different direction in the norm (12), the ele-
ments of the space Hα have regularity properties that depend on the direction
in the physical space (see Proposition 4.1 below). For this reason, one some-
times calls Hα a space of anisotropic distributions or an anisotropic space of
distribution.

The following properties of Hα are easily proven:

� Hα is a Hilbert space.

� C∞(M) is a dense subspace of Hα.

� H−|α| ⊆ Hα ⊆ H |α| with continuous inclusions (where for t ∈ R, we write
Ht for the standard Sobolev space).

� The L2 pairing induces an isomorphism between H−α and the dual of Hα.
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We will use an alternative definition of the space Hα, in the spirit of the
Paley–Littlewood decomposition (following the approach from [BT07, BT08,
Bal18]). For f ∈ D′(T2), define

Πu
0f = 0 and Πs

0f = c0(f), (13)

and for N ≥ 1

Πu
Nf(x) =

∑
k∈Z2

k∈C∗u
2N−1≤|k|<2N

ck(f)e2iπk·x and Πs
Nf(x) =

∑
k∈Z2

k/∈C∗u
2N−1≤|k|<2N

ck(f)e2iπk·x.

(14)
Notice then that

f =
∑
N≥0

Πu
Nf +

∑
N≥0

Πs
Nf (15)

in D′(T2). Rather than (12), we will use the following equivalent norm on Hα:

‖f‖2α =
∑
N≥0

4αN ‖Πu
Nf‖

2
L2 +

∑
N≥0

4−αN ‖Πs
Nf‖

2
L2 .

Let us also recall that for every L ∈ R the Sobolev space HL can be defined as
the space of distributions f on T2 such that the norm

‖f‖2HL :=
∑
n≥0

4LN (‖Πu
Nf‖

2
L2 + ‖Πs

Nf‖
2
L2)

is finite. This norm is equivalent to the standarn norm on HL.

3.3 Lasota–Yorke inequality

The proof of Theorem 1 is based on the study of the Koopman operator K
associated to F defined by

Kf = f ◦ F for f ∈ D′(M).

Notice that references sometimes study instead its formal adjoint, the (Ruelle–
Perron–Frobenius) transfer operator defined by

Lf =
1

|detDF | ◦ F−1
f ◦ F−1 for f ∈ D′(M).

As mentioned above, we will prove Theorem 1 for the examples of Anosov
diffeomorphisms from §3.1. The main technical result behind the proof of The-
orem 1 is the following Lasota–Yorke inequality. With Lemma 3.2, the proof of
Theorem 1 is reduced to spectral theoretic considerations that are exposed in
§3.4.

Lemma 3.2 (Lasota–Yorke inequality). Under the assumption of §3.1, there is
τ ∈ (0, 1) and ε > 0 such that if ‖ϕ‖C1 ≤ ε, α ≥ ε−1, then K induces a bounded
operator on Hα. Moreover, for every L ∈ R, there is a constant C > 0 such
that for every n ∈ N, there is a constant Cn,L such that for every f ∈ Hα we
have

‖Knf‖α ≤ Cτ
αn ‖f‖α + Cn,L ‖f‖HL . (16)
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Let us explain how we will use the fact that ‖ϕ‖C1 is small in the proof
of Lemma 3.2. Recall the properties (4), (5) and (6) of the matrix A. Let
ρ ∈ (1, |λ|) and notice that if ‖ϕ‖C1 is small enough then there is a constant
C0 ≥ 1 such that for every n ≥ 0, x ∈ T2, v ∈ Cu∗ and w ∈ R2 \ Cu∗ we have

t(DxF )−1(Cu∗ ) ⊆ Int(Cu∗ ) ∪ {0} , (17)

|t(DxF
n)−1v| ≥ C−1

0 ρn|v| and |t(DxF
−n)−1w| ≥ C−1

0 ρn|w|. (18)

With these properties in mind we want to adapt the argument from §2.2. How-
ever, in the non-linear case the action of K on Fourier coefficients is more in-
volved. The main idea is that the frequencies transition that are away from
those that appear in the linear case will only contribute to (16) through the
compact term ‖f‖HL . The actual proof of Lemma 3.2 presented here is inspired
from [BT07, BT08, Bal18].

In order to distinguish the frequencies transition that are allowed or not, let
Γ = N × {u, s} and for each n ≥ 0 introduce a relation ↪→n on Γ by (N, t) ↪→
(N ′, t′) if one of the following properties hold:

� t = t′ = u and N ≤ N ′ − n log2 ρ+ log2 C0 + 2;

� t = t′ = s and N ′ ≤ N − n log2 ρ+ log2 C0 + 2;

� t = s, t′ = u and N ≥ n log2 ρ or N ′ ≥ n log2 ρ.

Notice that the relation ↪→n select the frequencies transitions close to the linear
case, and all the transitions that are “more favorable”. In order to get rid of the
other frequencies transition, we use the non-stationary phase method to prove
the following lemma.

Lemma 3.3. Let ‖ϕ‖C1 be small enough so that (17) and (18) hold. For every
n ≥ 1 and every β ≥ 0, there is a constant Cn,L > 0 such that if (N, t) 6↪→n

(N ′, t′) then
∥∥∥Πt

NKnΠt′

N ′

∥∥∥
L2→L2

≤ Cn,L2−βmax(N,N ′).

Proof. Let (N, t), (N ′, t′) ∈ Γ be such that (N, t) 6↪→n (N ′, t′).
Notice that if max(N,N ′) ≤ n log2 ρ+1 then the result follows by taking Cn,L

large enough (it corresponds to a finite number of case). Consequently, we will
henceforth assume that max(N,N ′) ≥ n log2 ρ + 1. Notice that this reduction
gets rid of the case (t, t′) = (s, u). It also implies in the case t = t′ = u that
N 6= 0 and in the case t = t′ = s that N ′ 6= 0.

Let k, k′ ∈ Z2 be indexes that appear in the sum defining Πt
N and Πt′

N ′

respectively (recall (13) and (14)). Let us write the Fourier coefficient

ck(Kne2iπk′·x) =

∫
T2

e2iπΦk,k′ (x)dx,

where the phase Φk,k′ is defined on the torus by

Φk,k′ : x 7→ k · x− k′ · Fnx.

We are mostly interested in the gradient of this phase.

∇Φk,k′(x) = k − tDxF
n · k′ for x ∈ T2.

10



We claim that the property (N, t) 6↪→n (N ′, t′) implies that for every x ∈ T2 we
have

|∇Φk,k′(x)| ≥ C−1
n 2max(N,N ′), (19)

where the constant Cn does not depend on N,N ′, t, t′.
Let us start with the case t = t′ = u. In that case, we know that N is

non-zero and thus |k| ≥ 2N−1. Hence, for some C > 0, we have

|∇Φk,k′(x)| ≥ C−1|t(DxF
n)−1 · k − k′|

≥ C−1(|t(DxF
n)−1 · k| − |k′|) ≥ C−1(C−1

0 ρn|k| − |k′|)

≥ C−1(C−1
0 ρn2N−1 − 2N

′
)

≥ C−1C−1
0 ρn2N−2

≥ C̃−12max(N,N ′).

Here, we used (18) in the second line and the fact that N ≥ N ′ − n log2 ρ +
log2 C0 + 2 on the fourth and fifth line.

We proved (19) when t = t′ = u. The case t = t′ = s is similar, and we got
rid of the case (t, t′) = (s, u). Thus, we are left with the case (t, t′) = (u, s).
Remember that we have

|∇Φk,k′(x)| ≥ C−1|t(DxF
n)−1 · k − k′|.

Moreover, it follows from (17) that t(DxF
n)−1 ·k belongs to a closed cone within

Int(Cu∗ ) ∪ {0}. Since k′ /∈ Cu∗ , we find that the distance between the projections
to the unit circle of t(DxF

n)−1 · k and k′ is uniformly bounded below. Since at
least one of them is bounded away from zero, we find that the distance between
t(DxF

n)−1 · k and k′ has the order of magnitude 2max(N,N ′), and (19) follows.
Let us introduce the differential operator L on T2 defined by

Lf(x) =
1

2iπ

∇f(x) · ∇Φk,k′(x)

|∇Φk,k′(x)|2
.

Since L(e2iπΦk,k′ (x)) = e2iπΦk,k′ (x), we find that for m ≥ 0, we have

ck(Kne2iπk′x) =

∫
T2

e2iπΦk,k′ (x)(tL)m(1)dx,

where tL denotes the formal adjoint of L (obtained by integrating by parts). By
induction, we find that (tL)m(1) is a linear combination of terms of the form

product of ` derivatives of Φk,k′

|∇Φk,k′ |`+m
.

Thus, it follows from (19) that∣∣∣ck(Kne2iπk′x)
∣∣∣ ≤ Cm,n2−mmax(N,N ′).

Finally, notice that if f ∈ L2 then∥∥∥Πt
NKnΠt′

N ′f
∥∥∥
L2
≤
∑
k,k′

∣∣∣ck(Kne2iπk′·x)
∣∣∣ |ck′(f)|

≤ C̃m,n2−(m−2) max(N,N ′) ‖f‖L2 ,
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where the sum is over the indexes k and k′ that appear in the definition of Πt
N

and Πt′

N ′ respetively. We used that the number of terms in the sum is bounded

by some constant times 2N+N ′ . The result follows by taking m = β + 2.

Proof of Lemma 3.2. Assume that ‖ϕ‖C1 is small enough so that (17) and (18)
(and thus Lemma 3.3) hold. Without loss of generality, we may assume that
L < 0.

Let n ≥ 1 and f ∈ Hα. Start by estimating for N ≥ 0

‖Πu
NKnf‖

2
L2 =

∥∥∥∥∥∥Πu
NKn

∑
N ′≥0

Πu
N ′f +

∑
N ′≥0

Πs
N ′f

∥∥∥∥∥∥
2

L2

≤ 2

∥∥∥∥∥∥Πu
NKn

∑
N ′≥N+n log2 ρ−log2 C0−2

Πu
N ′f

∥∥∥∥∥∥
2

L2

+ 2

∥∥∥∥∥∥∥∥∥Πu
NKn

∑
N ′≥0,t∈{u,s}
(N,u)6↪→(N ′,t)

Πt
N ′f

∥∥∥∥∥∥∥∥∥
2

L2

.

Then, using Lemma 3.3, we find that∥∥∥∥∥∥∥∥∥Πu
NKn

∑
N ′≥0,t∈{u,s}
(N,u) 6↪→(N ′,t)

Πt
N ′f

∥∥∥∥∥∥∥∥∥
L2

≤
∑

N ′≥0,t∈{u,s}
(N,u)6↪→(N ′,t)

∥∥Πu
NKnΠt

N ′

∥∥
L2→L2

∥∥Πt
N ′f

∥∥
L2

≤ Cn,L2LN
∑

N ′≥0,t∈{u,s}
(N,u)6↪→(N ′,t)

4LN
′ ∥∥Πt

N ′f
∥∥
L2

≤ Cn,L2LN

 ∑
N ′≥0,t∈{u,s}
(N,u) 6↪→(N ′,t)

4LN
′


1
2

‖f‖HL

≤ C̃n,L2LN ‖f‖HL .
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Summing over N ≥ 0, we find that∑
N≥0

4αN ‖Πu
NKnf‖

2
L2 ≤ 2

∑
N≥0

‖K‖2nL2→L2 4αN
∑

N ′≥N+n log2 ρ−log2 C0−2

‖Πu
N ′f‖

2
L2

+ 2
∑
N≥0

4αN4LN ‖f‖2HL

≤ 2 ‖K‖2n
∑
N ′≥0

 ∑
N≤N ′−n log2 ρ+log2 C0+2

4αN

 ‖Πu
N ′f‖

2
L2

+ Cn,L ‖f‖2HL

≤ 2C2α
0 64α

4α − 1

(
‖K‖L2→L2 ρ

−α)2n ∑
N ′≥0

4αN
′
‖Πu

N ′f‖
2

+ Cn,L ‖f‖2HL

≤ 2C2α
0 64α

4α − 1

(
‖K‖L2→L2 ρ

−α)2n ‖f‖α + Cn,L ‖f‖2HL .

(20)

Here, we assumed (without loss of generality) that L < −|α|.
Now, for N ≥ 0, we find using Lemma 3.3 as above, that

‖Πs
NKnf‖

2
L2

≤ 2 ‖K‖2nL2→L2

( ∑
0≤N ′≤N−n log2 ρ+log2 C0+2

‖Πs
N ′f‖

2
L2

+
∑
N ′≥0

N ′≥n log2 ρ or N≥n log2 ρ

‖Πu
N ′f‖

2
L2

)

+ 4LN ‖f‖2HL

Summing over N , we find that∑
N≥0

4−αN ‖Πs
NKnf‖

2
L2

≤ 2 ‖K‖2nL2→L2

∑
N ′≥0

 ∑
N≥N ′+n log2 ρ−log2 C0−2

4−αN

 ‖Πs
N ′f‖

2
L2

+ 2 ‖K‖2nL2→L2

∑
N ′≥0

 ∑
N≥n log2 ρ

4−αN

 ‖Πu
N ′f‖

2
L2

+ 2 ‖K‖2nL2→L2

∑
N ′≥n log2 ρ

∑
N≥0

4−αN

 ‖Πu
N ′f‖

2
L2

+ Cn,L ‖f‖2HL

≤ 2C2α
0 64α

1− 4−α
(
‖K‖L2→L2 ρ

−α)2n ∑
N ′≥0

4−αN
′
‖Πs

N ′f‖
2
L2

+
2

1− 4−α
(
‖K‖L2→L2 ρ

−α)2n ∑
N ′≥0

‖Πu
N ′f‖

2
L2
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+
2

1− 4−α
(
‖K‖L2→L2 ρ

−α)2n ∑
N ′≥0

4αN
′
‖Πu

N ′f‖
2
L2

+ Cn,L ‖f‖2HL

≤ 2

1− 4−α
(
C2α

0 64α + 2
) (
‖K‖L2→L2 ρ

−α)2n ‖f‖2Hα
+ Cn,L ‖f‖2HL . (21)

Now, take α0 > 0 large enough so that τ := ‖K‖
1
α0

L2→L2 ρ
−1 < 1, and sum (20)

and (21) to get the result for α ≥ α0 (the estimate with n = 1 implies that K is
bounded on Hα).

Remark 3.4. Let g ∈ C∞(T2). Notice that with the same proof as Lemma 3.2,
we find that the operator gK also satisfies Lemma 3.2 (with the same value of
ε). In particular, gK is bounded on Hα.

3.4 Quasi-compactness

Notice that taking L < −α in Lemma 3.2, the injection of Hα in HL is compact
(because the injection of H−|α| in HL is). Then, Hennion’s theorem [Hen93]
based on Nussbaum’s formula for essential spectral radius [Nus70] implies with
Lemma 3.2 that:

Proposition 3.5. Under the assumption of Lemma 3.2, the intersection of the
spectrum of K acting on Hα and {z ∈ C : |z| > τα} is made of isolated eigen-
values of finite multiplicity.

More precisely, Hennion proves that if η > τα then there is a decomposition
of Hα as

Hα = E ⊕ F, (22)

where E and F are invariant by K, the space E is finite dimensional, F is closed
and the operator induced by K on F has spectral radius strictly less than η. Let
then A and B denotes the operators induced by K respectively on E and F . Let
PE and PF denote the projectors respectively on E and F according to (22).
If g ∈ C∞(T2), let P ∗Eg denote the linear form on E obtained by restricting
f 7→

∫
T2 fgdx.

With these notation, if f, g ∈ C∞(T2), we have for n ≥ 0∫
T2

f ◦ Fngdx =

∫
T2

Kn(f)gdx = P ∗Eg(AnPEf) +

∫
T2

Bnfgdx.

Since the spectral radius of B is strictly less than η, we find that∫
T2

Bnfgdx =
n→+∞

O(ηn).

The asymptotics of the sequence (P ∗Eg(AnPEf))n≥0 is obtained by writing the
Jordan decomposition of the finite dimensional linear operator A. Theorem 1
follows (since α can be taken arbitrarily large, η may be chosen arbitrarily small),
except maybe the fact that the aλ,k(f, g)’s are non-trivial, which is explained
below. Notice also that Remark 1.6 implies that the resonances in Theorem 1
do not depend on the particular construction of the space Hα.
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The decomposition (22) also implies that the resolvent (z − K)−1, which is
defined for |z| � 1 by

(z −K)−1 =
∑
n≥0

z−(n+1)Kn,

has a meromorphic continuation to {z ∈ C : |z| > η} as an operator from Hα to
itself (and thus from C∞(T2) to D′(T2)). Indeed, (z−A)−1 is meromorphic on
C, as given for instance by Cramer’s formula, and (z −B)−1 is holomorphic on
{z ∈ C : |z| > η} since the spectral radius of B is less than η. Thus, we have

(z −K)−1 = (z −A)−1PE + (z −B)−1PF .

Once again, since η may be chosen arbitrarily small by taking α large, we find
that (z − K)−1 has a meromorphic extension to C \ {0} as an operator from
C∞(T2) toD′(T2). Moreover, notice that at any pole of (z−K)−1 the coefficients
of negative indexes in the Laurent expansion have finite rank.

Let us recall that if λ is an eigenvalue of K of modulus larger than η, then
one may define a spectral projector on the eigenspace Eλ for K associated to λ
in the following way [Kat95, §III.6.4-5]

Pλ =
1

2iπ

∫
∂D(λ,ε)

(z −K)−1dz,

where ε > 0 is small enough so that the closed disc of center λ and radius ε
intersects the spectrum of K on Hα only at λ. Then, this projector commutes
with K and, with PE defines as above, we have

PE =
∑

λ∈σ(K|Hα )

|λ|≥η

Pλ.

Moreover, the Laurent expansion of (z−K)−1 is given near an isolated eigenvalue
λ with |λ| ≥ η by [Kat95, §III.6.4-5]

(z −K)−1 = J(z) +

M(λ)∑
k=0

(−1)k
(λ−K)kPλ
(z − λ)k+1

where J(z) is holomorphic near λ and M(λ) is the maximal size of a Jordan
block of K at λ.

Notice that the meromorphic extension of the function Ψf,g(z) from Remark
1.6 is given in term of the resolvent (z −K)−1 by

Ψf,g(z) =

∫
T2

((z −K)−1f)gdx.

Thus, for z near a resonance λ, we find that

Ψf,g(z) =

∫
T2

(J(z)f)gdx+

M(λ)∑
k=0

1

(z − λ)k+1

∫
T2

((λ−K)kPλf)gdx.

Now, if ` ∈ {0, . . . ,M(λ)}, since C∞(M) is dense in Hα and Pλ has finite rank,
we can find f ∈ C∞(M) such that (λ − K)`Pλf 6= 0 and (λ − K)kPλf = 0 for
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k = ` + 1, . . . ,M(λ). Then, taking g such that
∫
T2(λ − K)`Pλfgdx 6= 0 and

comparing with Remark 1.6, we find that the resonances of modulus larger than
η in Theorem 1 are exactly the eigenvalues of modulus larger than η of K on
Hα (a priori there could have been less resonances than eigenvalues) and that
N(λ) = M(λ) for λ ∈ Res. We also find that the aλ,k’s are non-trivial.

3.5 Proof of quasi-compactness

In this section, we give a proof of Proposition 3.5 that relies on Fredholm analytic
theory [DZ19, Theorem C.8] rather than on Hennion’s argument [Nus70, Hen93].

Proof of Proposition 3.5. Let z ∈ C be such that |z| > τα. We are going to
prove that z − K defines a semi-Fredholm operator on Hα. Pick some integer
m ≥ 0, and notice that for f ∈ Hα we have

z−1

(
m−1∑
k=0

z−kKk
)

(z −K)f = f − z−mKmf.

Thus

f = z−mKmf + z−1

(
m−1∑
k=0

z−kKk
)

(z −K)f,

and it follows from Lemma 3.2 that (we take L� −α)

‖f‖α ≤ C|z|
−mταm + Cm,z ‖f‖HL + Cm,z ‖(z −K)f‖Hα .

Taking m large enough, we get C|z|−mταm < 1, which gives

‖f‖α ≤
Cm,z

1− C|z|−mταm
‖f‖HL +

Cm,z
1− C|z|−mταm

‖(z −K)f‖Hα .

That is, for some new constant C that depends on z,

‖f‖α ≤ C ‖(z −K)f‖α + C ‖f‖HL for every f ∈ Hα. (23)

Let us prove that ker(z−K) is finite dimensional. Let (fn)n≥0 be a bounded
sequence in ker(z − K). Since the injection of Hα in HL is compact (because
L < −α), we can extract a subsequence (fnj )j≥0 that converges inHL. It follows
from (23) that (fnj )j≥0 is Cauchy in Hα and thus converges to an element of
ker(z − K) in Hα. Hence, bounded subsets of ker(z − K) are compact, and it
follows from Riesz theorem that ker(z −K) is finite dimensional.

Let us prove now that the image of z−K is closed. Let (gn)n≥0 be a sequence
of elements of the image of z − K that converges to some g in Hα. For each
n ≥ 0, choose fn ∈ Hα such that gn = (z−K)fn and then hn ∈ ker(z−K) such
that ‖fn − hn‖α ≤ (1 + 2−n)d(fn, ker(z −K)).

If (fn − hn)n≥0 has a bounded subsequence (in Hα), then one can extract a
subsequence (fnj−hnj )j≥0 that converges in HL. Since (z−K)(fnj−hnj ) = gnj
converges in Hα, it follows from (23) that (fnj − hnj )j≥0 is Cauchy, and thus
converges, in Hα. If f is the limit, we have (z−K)f = g and thus g belongs to
the image of z −K.
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If (fn−hn)n≥0 has no bounded subsequence, then ‖fn − hn‖α →
n→+∞

∞. For

n large enough, define xn = (fn − hn)/ ‖fn − hn‖α. Then (xn)n≥0 is bounded
in Hα. Extract a subsequence (xnj )j≥0 that converges in HL. Notice that

(z −K)xn =
gn

‖fn − hn‖α
→

n→+∞
0.

Thus, it follows from (23) that (xnj )j≥0 is Cauchy, and thus converges, in Hα.
Let x be the limit, and notice that (z −K)x = 0. Thus, for j ≥ 0, we have

d(fnj , ker(z −K)) ≤
∥∥fnj − hnj − ∥∥fnj − hnj∥∥α x∥∥α

≤
∥∥fnj − hnj∥∥α ∥∥xnj − x∥∥α

≤ (1 + 2−nj )
∥∥xnj − x∥∥α d(fnj , ker(z −K)),

which gives a contradiction for j large enough (recall that ‖fn − hn‖α →
n→+∞

∞).

Thus for |z| > τα, the operator z − K is semi-Fredholm on Hα. It follows
from [Kat95, Theorem IV.5.17] that the index of z − K does not depend on z.
Since z−K is invertible when |z| � 1, we find that the index of z−K is 0 when
|z| > τα, and thus z − K is Fredholm. Hence, Proposition 3.5 follows from the
analytic fredholm theory [DZ19, Theorem C.8].

4 SRB measure

4.1 Regularity properties of anisotropic distributions

Introduce the cone

Cu =
{
v ∈ R2 : 〈w, v〉 6= 0 for every w ∈ R2 \ Cu∗ \ {0}

}
.

Proposition 4.1. Let W be a C∞ curve in T2. Assume that for every x ∈W ,
the tangent space TxW to W at x is contained in the cone Cu. Then for α > 2 the
restriction operator RW : C∞(T2)→ C∞(W ) extends to a continuous operator
RW : Hα → D′(W ).

Remark 4.2. Let eu and es be eigenvectors for A associated to the eigenvalues
λ and ±λ−1. Notice that 〈eu, e∗u〉 = 0 and thus 〈eu, e∗s〉 6= 0. Consequently, eu
is in the interior of Cu. Hence any curve which is C1 close to a piece of unstable
manifold of F0 satisfies the assumptions of Proposition 4.1. One can also check
that if ‖ϕ‖C1 is small enough then any piece of unstable manifold for F satisfies
the assumptions from Proposition 4.1.

Remark 4.3. On T2, the presence of a reference measure allows us to identify
densities and smooth functions, and thus the space D′(T2) of distributions on
T2 with the dual of C∞(T2). However, if W is a curve in T2 (as in Proposition
4.1 for instance), we will actually work with D′(W ) as a space of functionals on
the space of densities on W .

Proof of Proposition 4.1. Let f ∈ Hα. Notice that there is a constant C > 0
(that does not depend on f) such that, for every k ∈ Z2, we have

|ck(f)| ≤ C(1 + |k|)−α ‖f‖α if k ∈ Cu∗
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and
|ck(f)| ≤ C(1 + |k|)α ‖f‖α if k /∈ Cu∗ .

Since α > 2, we see that ∑
k∈Z2

k∈Cu∗

ck(f)e2iπk·x (24)

converges to a bounded continuous function (on T2 and thus on W ) whose
supremum norm is controlled by ‖f‖α.

Let K be a compact subset of W and ϕ a smooth 1-form on W supported in
K. Let γ : I → T2 be a parametrization of W by arclength (with I an interval
of R). Let J = γ−1(K), and notice that J is compact. Write γ∗ϕ = gdt with
g a smooth function supported in J . From our assumption on W , we see that
there is a constant C > 0 such that

|〈w, γ′(t)〉| ≥ C−1|w| for every w ∈ Cu∗ and t ∈ J. (25)

For k ∈ Z2 \ Cu∗ , we have∫
W

e2iπk·xϕ =

∫
I

e2iπk·γ(t)g(t)dt.

Letting L be the differential operator on I defined by

Lu = −
(

u

2iπk · γ′

)′
,

we find, integrating by part, that (for any m ≥ 0)∫
W

e2iπk·xϕ =

∫
I

e2iπk·γ(t)Lmg(t)dt.

By induction, we find that Lmg is a linear combination of terms of the form

(k · γ(`1)(t)) . . . (k · γ(`p)(t))g(q)

(γ′(t))m+p
,

where q is less than m. Thus, from (25), there is a constant C > 0 such that∣∣∣∣∫
W

e2iπk·xϕ

∣∣∣∣ ≤ C(1 + |k|)−m ‖g‖Cm

for every k ∈ Z2 \ Cu∗ . Taking |k| ≥ α+ 2, we find that the sum∑
k∈Z2

k∈Cu∗

ck(f)e2iπk·x (26)

converges to a distribution on W of order α+ 2.
We can finally define RW f as the sum of the distributions (24) and (26). It

follows from the estimate above that RW is bounded from Hα to D′(W ). If f
is a C∞ function then RW f is the restriction of f to W since f is the sum of
its Fourier series.
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Remark 4.4. One can check that if f ∈ Hα then RW f depends continuously
on W in the following sense. Let I be an interval of R and (γn)n≥0, γ be C∞

embeddings from I to T2. Assume that W = γ(I) and Wn = γn(I), n ≥ 0 satisfy

the assumptions from Proposition 4.1, and that for each k ≥ 0 the function γ
(k)
n

converges to γ(k) when n goes to +∞ uniformly on all compact subsets of I.
Let ϕ be a smooth 1-form on T2 such that there is a compact subset K of I
such that γ∗nϕ is supported in K for every n ≥ 0. Then∫

Wn

RWnfϕ →
n→+∞

∫
W

RWϕ.

Indeed, this convergence holds when f ∈ C∞(T2). Moreover, it follows from
the proof of Proposition 4.1 that the linear forms

f 7→
∫
W

RW fϕ−
∫
Wn

RWn
fϕ,

for n ≥ 0, are uniformly bounded on Hα. The result then follows by an approx-
imation argument.

4.2 Understanding the largest eigenvalue

We are now going to study the largest eigenvalues of the operator K acting
on the space Hα, and prove Theorem 2 in the particular case of the Anosov
diffeomorphisms from §3.1.

In all this section, we assume that the assumptions from Proposition 3.5 are
satisfied and choose α large enough so that Proposition 4.1 holds. We split the
proof in several parts of different lengths.

First, notice that 1 is a resonance for K. Indeed, K1 = 1 and the function
constant equal to 1 belongs to Hα since it is C∞. Recall that we proved in
§3.4 that the eigenvalues of modulus strictly larger than τα of K on Hα are
resonances.

Lemma 4.5. Under the assumption of Proposition 3.5, there is no resonance
of modulus larger than 1, and the eigenvalues of K on Hα of modulus 1 have no
Jordan block.

Proof. The idea of the proof is relatively simple: a resonance of modulus strictly
larger than 1 or a resonance of modulus 1 with a Jordan block would produce
an unbounded term in the right hand side of (1), while the left hand side is
clearly bounded. The actual proof is slightly more complicated since we need
to explain why there cannot be cancellation between the different terms in the
right hand side of (1) that would make the sum bounded despite the presence
of unbounded terms.

Let ρ be the maximal modulus of a resonance (notice that ρ ≥ 1). Let
λ1, . . . , λd be the resonances of modulus ρ. Remember that τα < 1 ≤ ρ. Recall
Pλ1

, . . . , Pλd , the spectral projectors associated to λ1, . . . , λd. For j = 1, . . . , d,
since λj is the only eigenvalue of the operator induced by K on the image of
Pλj , there is a nilpotent operator Nj on the image of Pλj such that KPλj =
(λj +Nj)Pλj . Thus, we can write

K =

d∑
j=1

(λj +Nj)Pλj +Q,
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where Q is a bounded operator on Hα with spectral radius strictly less than ρ
such that QPλ1

= · · · = QPλd = Pλ1
Q = · · · = PλdQ = 0. Letting kj be the

smallest integer such that N
kj
j = 0, we find that for n ≥ 0, we have

Kn =

d∑
j=1

kj−1∑
`=0

(
n
`

)
λn−`j N `

jPλj +Qn.

Without loss of generality, we may assume that k1 is larger than or equal to
k2, . . . , kd. Then, we find that

lim
n→+∞

1

nk1

n−1∑
m=0

λ−m1 Km =
λ1−k1

1

k1!
Nk1−1

1 Pλ1
(27)

as bounded operator on Hα. Since Nk1−1
1 6= 0 by definition of k1, there is

h ∈ Hα in the image of Pλ1 such that Nk1−1
1 h 6= 0. Since C∞(M) is dense in

Hα and Pλ1
has finite rank, there is f ∈ C∞(M) such that Pλ1

f = h. Let now
g ∈ C∞(M) be such that

∫
T2 N

k1−1
1 hgdx 6= 0.

It follows then from (27) that

λ1−k1
1

k1!

∫
T2

Nk1−1
1 hgdx = lim

n→+∞

1

nk1

n−1∑
m=0

λ−m1

∫
T2

f ◦ Tmgdx.

Notice then that for n ≥ 0, we have∣∣∣∣∣ 1

nk1

n−1∑
m=0

λ−m1

∫
T2

f ◦ Tmgdx

∣∣∣∣∣ ≤ 1

nk1
|f |∞

∫
T2

|g|dx
n−1∑
m=0

ρ−m. (28)

If ρ > 1, we see that this quantity goes to 0 as n goes to ∞, which contradicts∫
T2 N

k1−1
1 hgdx 6= 0.

Thus ρ = 1. Similarly, if k1 ≥ 2, then (28) implies that
∫
T2 N

k1−1
1 hgdx = 0,

which is a contradiction. Thus k1 = k2 = · · · = kd = 1, that is there is no
Jordan block for resonances of modulus 1.

Lemma 4.6. Under the assumption of Proposition 3.5, if F is transitive, then
1 is a simple eigenvalue of K on Hα and there is no other eigenvalue of modulus
1.

Remark 4.7. Notice that the transitivity assumption in Lemma 4.6 (and in
Lemma 4.8 below) is actually not needed. Indeed, it follows from the structural
stability of hyperbolic CAT maps [KH95, Theorem 2.6.3] that the Anosov dif-
feomorphisms from §3.1 are transitive. We will also use in the proof of Lemma
4.6 the fact that T2 is connected.

Proof of Lemma 4.6. The proof of this lemma is adapted from the proof of
[GL08, Theorem 5.1].

Let λ be a resonance of K with modulus 1 and let h ∈ Hα be an eigenvector
associated to λ. Let Pλ be the spectral projector associated to λ. Since C∞(M)
is dense in Hα and Pλ has finite rank, there is f ∈ C∞(M) such that Pλf = h.
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Working as in the proof of Lemma 4.6, we find that

Pλ = lim
n→+∞

1

n

n−1∑
k=0

λ−kKk,

and it follows that for every g ∈ C∞(T2) we have∣∣∣∣∫
T2

hgdx

∣∣∣∣ ≤ |f |∞ ∫
T2

|g|dx. (29)

Thus, h is a L∞ function.
Let now W be a piece of unstable manifold for F , and recall that W satisfies

the assumptions from Proposition 4.1. Let v ∈ R2 be transverse to W at every
point of W (such a v exists because W satisfies the assumption from Proposition
4.1). Let χ : R → [0,∞) be a compactly supported function of integral 1 and
let χε : x 7→ ε−1χ(ε−1x) for ε > 0. Notice that if δ > 0 is small enough then the
map

G : W × (−δ, δ) → T2

(x, t) 7→ x+ tv

is a diffeomorphism on its image (which is a neighbourhood of W in T2). Let
now ϕ ∈ D(W ). For t ∈]− δ, δ[, let ϕt denote the pullback of ϕ by x 7→ x− tv,
this is a density on W + tv. It follows from Remark 4.4 that∫

W

RWhϕ = lim
ε→0

∫ δ

−δ
χε(t)

(∫
W+tv

RW+tvhϕt

)
dt.

Let mW denotes the arclength measure on W and write ϕ = ψdmW where ψ is
C∞ and compactly supported. Then, for ε > 0 small enough, we have∫ δ

−δ
χε(t)

(∫
W+tv

RW+tvhϕt

)
dt =

∫
T2

h(χεψ) ◦G−1JG−1dx, (30)

where JG−1 denotes the Jacobian of G−1 (where W × (−δ, δ) is endowed with
the product measure). Indeed, for a smooth function h the formula (30) is a
consequence of the change of variable formula, and the general case follows by
a density argument (since both sides are continuous linear forms on Hα). Using
(29), the change of variable formula again and Fubini’s theorem, we find that∣∣∣∣∣
∫ δ

−δ
χε(t)

(∫
W+tv

RW+tvhϕt

)
dt

∣∣∣∣∣ ≤ |f |∞
∫
T2

∣∣(χεψ) ◦G−1
∣∣ JG−1dx

≤ |f |∞
∫ δ

−δ
χε(t)dt×

∫
W

|ϕ| = |f |∞
∫
W

|ϕ|.

It follows that ∣∣∣∣∫
W

RWhϕ

∣∣∣∣ ≤ |f |∞ ∫
W

|ϕ|,

and thus RWh is a L∞ function, bounded by |f |∞.
Applying Lebesgue differentiation theorem to RW f , we find that there is

x0 ∈W such that

lim
ε→0

1

ε

∫
Wε(x0)

|RWh(x0)−RWh(y)|dmW (y) = 0, (31)
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where Wε(x0) denotes the interval of arclength ε centered at x0 in W .
Notice that for every n ≥ 0, the curve FnW is a piece of unstable manifold,

and thus satisfies the assumptions from Proposition 4.1. Moreove, we have

RFnWh ◦ Fn = RWh. (32)

Indeed, this relation is immediate when h is smooth and both sides define con-
tinuous operators from Hα to D′(W ).

It follows from the unstable manifold theorem (see Proposition 1.4) that
FnW becomes longer and longer when n goes to +∞. Fix some small σ > 0,
and choose a sequence (εn)n≥0 going to 0 such that for every n ≥ 0 large enough
the length of FnWεn(x0) is σ. We can then find a strictly increasing sequence
(nj)j≥0 of integers such that

� λnj →
j→+∞

1;

� (Fnj (x0))j≥0 converges to a point x ∈ T2.

Then, it follows from Proposition 1.4 that Fnj (Wεnj
(x0)) converges to a piece

W0 of the unstable manifold of x in the sense of Remark 4.4.
Let us prove that RW0h is constant. Let ϕ ∈ D(W0). Extend ϕ to a smooth

1-form on T2, and notice that∣∣∣∣∫
W0

RW0
hϕ−RWh(x0)

∫
W0

ϕ

∣∣∣∣
≤

∣∣∣∣∣
∫
W0

RW0
hϕ−

∫
FnjWεnj

(x0)

RFnjWεnj
(x0)hϕ

∣∣∣∣∣
+ |λnj − 1|

∣∣∣∣∣
∫
FnjWεnj

(x0)

RWεnj
(x0)h ◦ Fnjϕ

∣∣∣∣∣
+ |RWh(x0)|

∣∣∣∣∣
∫
W0

ϕ−
∫
FnjWεnj

(x0)

ϕ

∣∣∣∣∣
+

∫
Wεnj

(x0)

|RWh−RWh(x0)||(Fnj )∗ϕ|.

(33)

Notice that we used (32) and the fact that Kh = λh. Let us explain why all the
terms in the right hand side of (33) go to 0 as j goes to ∞. The first one goes
to 0 because of Remark 4.4. The seconde one because λnj goes to 1 (the other
factor is uniformly bounded since we know that RWεnj

(x0)h◦Fnj is bounded by

|f |∞). The third one goes to 0 because ϕ is continuous. The fourth term goes
to 0 as can be seen from (31) and a bounded distortion argument.

Thus, we find RW0
h is constant on W0. Since F is transitive, we can find

a point with dense forward orbit close enough to x so that its stable manifold
intersects W0. Thus, there is a point x′ ∈ W0 whose forward image is dense.
Then, working as above, we find that for every y ∈ T2, the restriction of h to
a piece of unstable manifold of y is constant. Indeed, we can first take (nj)j≥0

such that Fnj (x′) →
j→+∞

y, and then, up to extraction assume that (λnj )j≥0

converges (not necessarily to 1). We can then redo the argument above starting
at x′ instead of x0 (the estimate (31) holds now because RW0h) is constant.
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Let us now defined a function h̃ on T2 in the following way: for every y ∈ T2,
we let h̃(y) be the constant value of the restriction of h to a piece of the unstable
manifold of y. It follows from Remark 4.4 that h̃ is a continuous function.
Moreover, one can check that h̃ is a representative of h using Fubini’s theorem
and a density argument.

Let us prove that h̃ is constant. It follows from the definition of h̃ that it
is locally constant (and thus constant) on each unstable manifold. Moreover, if
y0, y1 belong to the same stable manifold then d(Fnx, Fny) →

n→+∞
0. Since for

n ≥ 0, we have

|h̃(y0)− h̃(y1)| = |λ−nh̃(Fny0)− λ−nh̃(Fny1)| = |h̃(Fny0)− h̃(Fny1)|.

It follows from the uniform continuity of h̃ that h̃(y0) = h̃(y1). Now, if x, y ∈ T2

are close enough to each other, we find that h̃(x) = h̃([x, y]) = h̃(y). Hence, h̃
is locally constant, and thus constant since T2 is connected.

Thus, we have λ = 1. Since there is no Jordan block and constant functions
are the only eigenvectors, we find that 1 is a simple eigenvalue.

Lemma 4.8. Under the assumption of Proposition 3.5, if F is transitive then
the left eigenvector of K associated to 1 is the SRB measure of F .

Proof. Let l denote the left eigenvector of K associated to 1 such that `(1) = 1.
Notice that there is an operator Q : Hα → Hα of spectral radius strictly less
than 1 such that ` ◦Q = 0, Q(1) = 0 and

Kf = l(f)1 +Qf for f ∈ Hα. (34)

In particular, for n ≥ 0 and f ∈ C∞(T2), we have

Knf = l(f)1 +Qnf. (35)

Thus, if g ∈ C∞(T2) and η ∈ (0, 1) is strictly larger than the spectral radius of
Q, we have ∫

T2

f ◦ Fngdx =
n→+∞

l(f)

∫
T2

gdx+O(ηn).

Taking g = 1, since ∣∣∣∣∫
T2

f ◦ Fndx

∣∣∣∣ ≤ |f |∞
for every n ≥ 0, we find that |l(f)| ≤ |f |∞. It implies that there is a complex
Borel measure µ on T2 such that

l(f) =

∫
T2

fdµ for f ∈ C∞(T2).

Moreover, we know that µ(T2) = l(1) = 1 and that |µ|(T2) ≤ 1. Hence, µ is a
probability measure. Since for f ∈ C∞(M), we have∫

T2

fdµ = lim
n→+∞

∫
T2

f ◦ Fndx,
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we find that µ is F -invariant. In order to prove that µ is the SRB measure, we
will check that µ is physical, following an argument that can be found in [BG09,
Appendix B].

Let f ∈ C∞(T2). We want to prove that

Bf =

{
x ∈ T2 :

1

n

n−1∑
k=0

f ◦ F k(x) →
n→+∞

∫
T2

fdµ

}

has full Lebesgue measure. Without loss of generality, we may assume that∫
T2 fdµ = 0 and that f is real-valued. Let us write Snf =

∑n−1
k=0 f ◦ F k for

n ≥ 0.
Using (34) we find that for k, ` ≥ 0 we have

f ◦ F kf ◦ F k+` = Kk(fK`f) =

∫
T2

fKQ`−1fdµ+Qk(fKQ`−1f).

Since fK is bounded on Hα (see Remark 3.4), we find that f ◦ F kf ◦ F k+` is
bounded in Hα by some C(ηk + ηk+`) where η ∈ (0, 1) and C depends on f but
not on k and `. Thus∣∣∣∣∫

T2

SnfSmfdx

∣∣∣∣ ≤ n−1∑
k=0

m−1∑
`=0

∣∣∣∣∫
T2

f ◦ F kf ◦ F `dx
∣∣∣∣ ≤ C n−1∑

k=0

m−1∑
`=0

(ηk + η`)

≤ C̃(m+ n).

Thus, expanding and using the estimate above to bound the rectangle terms,
we find that, for some constant C > 0, we have∫

T2

∣∣∣∣Snfn − Smf

m

∣∣∣∣2 dx ≤ C
(

1

m
+

1

n

)
.

For p ≥ 1, define then gp = Sp4f/p
4, and notice that ‖gp+1 − gp‖L2 ≤ Cp−2 for

some constant C > 0 that does not depend on p. It follows from Borel–Cantelli
Lemma that (gp)p≥0 converges Lebesgue almost everywhere to some function g.
Using that f is bounded, we find that for p ≥ 1 and p4 ≤ n < (p+ 1)4 we have
|Snf/n − gp| =

p→+∞
O(p−1). It follows that Snf/n converges Lebesgue almost

everywhere to g. Since the functions (Snf/n)n≥0 are uniformly bounded, we
find that g is bounded and the dominated convergence theorem implies that
(Snf/n)n≥0 converges to g in distribution. However, it follows from (35) that
(Snf/n)n≥0 converges to l(f) =

∫
T2 fdµ = 0 in distribution and thus g = 0

Lebesgue almost everywhere. This proves that Bf has full Lebesgue measure.
Let now (fn)n≥0 be a sequence of elements of C∞(T2) with dense image in

C0(T2). Notice that
⋂
n≥0Bfn has full Lebesgue measure. By an approximation

argument we find that if x ∈
⋂
n≥0Bfn and w : T2 → C is continuous then

1

n

n−1∑
k=0

w ◦ F k(x) →
n→+∞

∫
T2

wdµ.

Hence µ is physical, and is consequently the SRB measure of F .
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4.3 Exponential mixing of the SRB measure

Theorem 1 gives the asymptotics of correlations of F with respect to a smooth
measure on M . However, one can use the same method to study the asymptotics
of correlations with respect to the SRB measure µ.

Theorem 3. Under the assumption of Theorem 1, for every λ ∈ Res and
k ∈ 0, . . . , N(λ), there is a continuous linear form bλ,k : C∞(M)×C∞(M)→ C
that factorizes through a finite dimensional space, such that for every η > 0 and
f, g ∈ C∞(M) we have

∫
T2

f ◦ Fngdµ =
n→+∞

∑
λ∈Res
|λ|≥η

N(λ)∑
k=0

bλ,k(f, g)nkλn +O(ηn).

Moreover, if M is conenected,

b1,0 : (f, g) 7→
∫
T2

fdµ

∫
T2

gdµ.

Proof. Let us write the proof under the assumption of Proposition 3.5.
Let f, g ∈ C∞(T2). Recall the left eigenvector l for K associated to the

eigenvalue 1, given for h ∈ C∞(T2) by

l(h) =

∫
T2

hdµ.

Notice that l is a bounded linear form on Hα, where α is large enough, so that
Propositions 3.5 and 4.1 hold.

From Remark 3.4, we know that the operator gK is bounded on Hα. Thus
for n ≥ 1, we have ∫

T2

f ◦ Fngdµl(gK(Kn−1f)),

and the result follows then from linear algebra using Proposition 3.5 as in §3.4.

Corollary 4.9. Under the assumption of Theorem 1, for every f, g ∈ C∞(M),
we have ∫

T2

f ◦ Fngdµ →
n→+∞

∫
T2

fdµ

∫
T2

gdµ.

Remark 4.10. Notice that Corollary 4.9 implies that the SRB measure µ is
mixing for F .

5 Going further

A natural question for the reader at the end of this minicourse is: how to
generalize the proofs that were given in these notes to general smooth transitive
Anosov diffeomorphisms? First, the generalization to the higher dimension is
relatively simple: one can work with Fourier series on higher dimensional tori.
Then, one need to get rid of the assumption that F is a small perturbation of a
CAT map. To do so, one just needs to notice that, locally, any smooth map is a
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small perturbation of a linear map, and then use the space Hα from these notes
as a local model. To get a global space suited to any Anosov diffeomorphism
just needs to glue together different copies of the local model, which can be
done using a partition of unity. Finally, we totally ignored here the finitely
differentiable case, in which the proof of a Lasota–Yorke inequality become
more technical. The strategies that allow to deal with this difficulty with the
kind of spaces that we used here are described for instance in [Bal18].

Let us give now a few references that are potential entry doors to the liter-
ature on hyperbolic dynamics using spaces of anisotropic distributions. There
are plenty of possible constructions of spaces of anisotropic distributions, a
panorama of these different methods is given in [Bal17]. We gave in this mini-
course a pedestrian approach of the spaces constructed via microlocal analysis.
A more elaborated exposition may be found in [FRS08, Bal18] in the case of
Anosov diffeomorphisms or in [FS11, DZ16] for flows. For more geometric con-
structions, one can refer to [GL06, GL08, BL07, BL13]. More introductory
expositions may be found in [Liv19, DKL21, Dem18]. Notice that the lat-
ter focuses on spaces that allow to study hyperbolic dynamical systems with
some singularities (for more advanced references on this topic, see for instance
[DL08, DZ14, DZ11, DZ13]).
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Brasileiro de Matemática. Instituto Nacional de Matemática Pura e
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